

AWS PT Final Project
Prepared by: Samuel Ovadya

Email: itsafe.samuel@ovadya.com

Date: 08/08/2024

Abstract:

In an era where digital transformation is reshaping industries and businesses, the secure management of cloud resources

is of paramount importance. This document presents the culmination of our efforts during the AWS Cloud Security

course at ITSafe College. Our final project delves into the intricacies of securing AWS cloud infrastructure, showcasing our

understanding of fundamental security concepts, best practices, and hands-on implementation within the Amazon Web

Services (AWS) ecosystem.

Acknowledgments:

We extend our gratitude to our instructors at ITSafe College for their guidance and support throughout this course. Their

expertise has been invaluable in shaping our understanding of cloud security .

Note :

This document is a culmination of our in-depth exploration of AWS cloud security. The following pages will provide a

comprehensive overview of our project, including the objectives, methodologies, and outcomes. Our primary aim is to

demonstrate our ability to design and implement a secure AWS environment while adhering to industry best practices .

The project was carried out on the website Cloud Goat & flAWS.cloud

https://github.com/RhinoSecurityLabs/cloudgoat
http://flaws.cloud/

table of content
CLOUD GOAT .. 3

Introduction ... 3

Scope .. 3

AWS Cloud Infrastructure ... 3

Conclusions ... 3

Scenarios .. 4

1. rce_web_app ... 5

Execution Demonstration .. 5

2. Cloud_breach_s3 ... 10

Execution Demonstration .. 10

3. ECS_takeover.. 15

Execution Demonstration .. 15

4. iam_privesc_by_attachment .. 22

Execution Demonstration .. 22

5. vulnerable_cognito .. 29

Execution Demonstration .. 29

6. vulnerable_lambda .. 41

Execution Demonstration .. 41

7. iam_privesc_by_rollback ... 47

Execution Demonstration .. 47

FLAWS.CLOUD .. 52

flAWS – Level 1 .. 52

flAWS – Level 2 .. 54

flAWS – Level 3 .. 55

flAWS – Level 4 .. 58

flAWS – Level 5 .. 63

flAWS – Level 6 .. 67

CLOUD GOAT

INTRODUCTION
The penetration testing of Cloud Goat and flAWS.cloud has been extended to include an assessment of
its AWS Cloud infrastructure. To improve data protection and general security, this thorough test tries to
find and fix any weaknesses in the AWS environment. ITSafe understands how crucial it is to protect its
cloud infrastructure from any assaults.

The AWS Cloud infrastructure underwent a grey box security assessment with the goal of assessing its
resistance to different threats and bolstering data protection mechanisms.

SCOPE
AWS Cloud Infrastructure
The scope of penetration testing encompasses the entire AWS Cloud infrastructure of Cloud Goat and
flAWS.cloud, with limited prior knowledge of the specific AWS services and configurations in use. The
assessment includes but is not limited to:

• Assessing the AWS environment for vulnerabilities related to injection attacks, including both
client and server-side vulnerabilities.

• Evaluating adherence to AWS best practices in areas such as Identity and Access Management
(IAM), network security, and resource configurations.

• Inspecting how sensitive data is managed within the AWS environment, including storage,
encryption, and access controls.

• Assessing the risk of unauthorized information disclosure within the AWS infrastructure.
• Conducting tests against advanced cloud-specific attacks, such as privilege escalation, data

exfiltration, and cloud misconfigurations.
• Evaluating the effectiveness of AWS Identity and Access Management policies and roles in

ensuring proper authorization and access control.

This penetration test aims to provide information that may be used to strengthen security protocols in
the cloud environment. The results will aid in the company's defense against potential attacks and
weaknesses in its AWS infrastructure.

CONCLUSIONS

2 – Easy
4 – Moderate
1 - Hard

Vulnerabilities

Hard Moderate Easy

7

SCENARIOS

No. Test Type Risk Level General Explanation

1 rce_web_app hard

Starting as the IAM user Lara, the attacker explores a Load Balancer and S3

bucket for clues to vulnerabilities, leading to an RCE exploit on a vulnerable

web app which exposes confidential files and culminates in access to the

scenario’s goal: a highly-secured RDS database instance.

2 Cloud_breach_s3 moderate

In this scenario, you are presented as an anonymous outsider with no

access or privileges. The attacker exploits a misconfigured reverse-proxy

server to query the EC2 metadata service and acquire instance profile keys.

Using these keys, the attacker can discover, access, and exfiltrate sensitive

data from an S3 bucket.

3 ECS_takeover moderate

In this scenario, you are presented with access to an external website. The

attacker needs to find a remote code execution (RCE) vulnerability. By

exploiting RCE, the attacker gains access to resources available to the

website container. By abusing several ECS misconfigurations, the attacker

can obtain IAM permissions that allow them to force ECS into rescheduling

the target container to a compromised instance.

4 IAM_privesc_by_attachment moderate

In this scenario, you are presented with a very limited set of permissions.

The attacker leverages instance-profile-attachment permissions to create a

new EC2 instance with significantly greater privileges than their own. With

access to this new EC2 instance, the attacker gains full administrative

powers within the target account. This allows the attacker to achieve their

goal of deleting the cg-super-critical-security-server, paving the way for

further nefarious actions.

5 Vulnerable_cognito moderate

In this scenario, you are presented with a signup and login page with AWS

Cognito in the backend. You need to bypass restrictions and exploit

misconfigurations in Amazon Cognito in order to elevate your privileges

and get Cognito Identity Pool credentials.

6 vulnerable_lambda Easy

In this scenario, you start as the 'bilbo' user. You will assume a role with

more privileges, discover a lambda function that applies policies to users,

and exploit a vulnerability in the function to escalate the privileges of the

bilbo user in order to search for secrets.

7 iam_privesc_by_rollback Easy

In this scenario, you are presented with a highly-limited IAM user. The

attacker discovers they can review previous IAM policy versions and

restore a version that grants full admin privileges. By restoring this version,

the attacker can exploit a privilege escalation to obtain full admin

privileges.

1. RCE_WEB_APP
Execution Demonstration

We are starting the instance we get 2 users credentials

Let’s add them to our ~/.aws/credentials config file:

LARA

We will start with Lara, first let’s get the full username

Then list attached policies:

We don’t have the permissions to list the policies, since we know we should find, website and buckets let’s try accessing

S3:

And we find 3 buckets, when trying to access them we only manage to read in the logs bucket:

Let’s look deeper at the objects present in the bucket:

Now we will Download the objects:

When looking at the files we get an ELB log file containing some http GET requests logs:

In this log file one request seems interesting:

When browsing the link we get a form when trying to submit the form with a random value we get:

Now let’s try the same with a real Linux command:

The command has been executed.

Let’s try to access the metadata like in Flaws.cloud challenge:

Most of the cloud solution today contains a metadata server at the IP 169.254.169.254 , let take a look at it.

Let’s look at the user-data script, which is the script at initiation of the instance:

And we have some credentials for a database: user= cgadmin &pwd= Purplepwn2029

 But we even don’t need to connect to the database to get the Super-Secret-Passcode since we can see it being inserted

in the user-data script:

 V!C70RY-4hy2809gnbv40h8g4b

FIX:

• Restrict S3 Bucket Access :

o Make S3 buckets private and apply least privilege policies.

• Tighten IAM Permissions :

o Remove unnecessary IAM permissions and enforce least privilege.

• Enable MFA for IAM Users:

o Require MFA for all IAM users with console access.

• Set Up Logging and Monitoring:

o Use CloudTrail and AWS Config to monitor and audit resource usage.

• Secure the Web Application :

o Apply basic web security practices like input validation and use AWS WAF.

2. CLOUD_BREACH_S3
Execution Demonstration

In this Scenarios we start only with an IP

Let’s do a reverse DNS to get the DNS associated with it:

We have an EC2 instance we can now guess we will have a website hosted so let’s browse this IP

When browsing we do not receive anything however when accessing this IP via curl we get a small message:

It seems that there is some Host check before accessing the IP, the Ip requested is the metadata server’s Ip which is:

169.254.169.254

Let’s use curl to set the Host header:

And we have the metadata server content , which by the way has been precised in the error message when proxy has

been mentioned

Let’s take a deeper look at its content:

User-Data:

No really useful information except for backend tech (NGINX)

Meta-data:

Lots of directory might be interesting but let try first the IAM security credentials:

And we have cred & token

Let’s edit the ~/.aws/credentials to be able to connect with this user, it should look like this at the end:

Let’s list the policies:

We can’t list the policies however we might still access some resources, let’s try with S3 bucket:

Now that we have a bucket name, let’s look at its content:

First, we will copy the data in our directory:

We can now look at each object and we will see a lot of sensitive data:

FIX:

• Restrict S3 Bucket Permissions :

o Ensure S3 buckets are private by default and apply least privilege access policies to limit access to only

authorized users.

• Enable Bucket Encryption :

o Use server-side encryption (SSE) to protect data at rest. Configure buckets to require encryptions for all

objects.

• Implement Bucket Policies and Access Control Lists (ACLs):

o Review and configure bucket policies and ACLs to enforce stricter access controls and prevent public

access.

• Enable S3 Access Logging :

o Activate S3 server access logging to track access requests and monitor for unauthorized access or

anomalies.

• Regularly Review and Audit S3 Configurations:

o Use AWS Config to continuously monitor and audit S3 bucket configurations for compliance with security

policies.

3. ECS_TAKEOVER
Execution Demonstration

This time we will start with a URL: http://ec2-18-209-210-190.compute-1.amazonaws.com/

When trying to input an URL in the field:

We get the http response printed:

Let’s try accessing the metadata server:

And we have indeed been able to access it, now the first thing I like to do Is to check what is inside the User Data script,

often when installing the system, credentials or configuration are left in this script :

http://ec2-18-209-210-190.compute-1.amazonaws.com/

And we indeed found some ECS configuration, we now know that there is an ECS cluster and the config file location,

Let’s try to find some credentials which are usually located in http://169.254.169.254/latest/meta-data/iam/security-

credentials/cg-ecs-takeover-ecs_takeover_cgidqow9p460z9-ecs-agent :

Let’s use these credentials to configure this new user:

~/.aws/credentials should look like this.

When trying to access the ECS cluster we get a denied access:

Lets go back to the website, to do the request it surely use a command like curl , this might allows us to get an RCE

(remote command execution):

We can insert in the ‘URL’ a command which will be run after the the curl command :

Now that this works , let’s try to list the ECS from there; Since AWS CLI is not installed and ECS are docker container , we

can use docker commands to list the docker container:

http://169.254.169.254/latest/meta-data/iam/security-credentials/cg-ecs-takeover-ecs_takeover_cgidqow9p460z9-ecs-agent
http://169.254.169.254/latest/meta-data/iam/security-credentials/cg-ecs-takeover-ecs_takeover_cgidqow9p460z9-ecs-agent

Then execute this command

Which is accessing the IP containing the security credentials for the ECS containers (like a kind of metadata server for

EC2)

We can then save these creds like we have done earlier , and try access the ECS:

We now have the cluster ARN, and have a peek in it:

We will start by enumerating the tasks:

 Then list what is inside our tasks:

And we have a lot of information but what is more important is what there is lower:

We are seeing that there is the service vault, and that it is launched from an EC2:

When looking at the service:

We can see the service is Defined as REPLICA, after a small googling we find out that it means that whenever the

container crashes it try to spawn on any available EC2.

Now if we remember in the beginning we got an RCE on an EC2, unfortunately this RCE didn’t give us the access to this

ECS container, however now that we know that a new container will spawn on any available EC2 in case of crash

We can try ‘crashing’ the ECS to make it spawn on the ECS we have access to .

To make it ‘crash’ we can set the ECS in state: DRAINING

 We first need to get the container instance name:

Then set the instance to DRAINING:

The operation seemed to work, let try to list the docker container again from within the webpage:

http://ec2-18-209-210-190.compute-1.amazonaws.com/?url=%3B+docker+ps

And we can see that the container spawned in our EC2, lets access it and list the directory:

Let’s print the flag :

http://ec2-18-209-210-190.compute-1.amazonaws.com/?url=%3B+docker+exec+ad4eb52adc36+cat+FLAG.TXT

http://ec2-18-209-210-190.compute-1.amazonaws.com/?url=%3B+docker+ps
http://ec2-18-209-210-190.compute-1.amazonaws.com/?url=%3B+docker+exec+ad4eb52adc36+cat+FLAG.TXT

FIX:

• Restrict ECS Task IAM Role Permissions:

o Apply the principle of least privilege to IAM roles assigned to ECS tasks, ensuring they have only the

permissions needed for their specific operations.

• Enable ECS Task Definition Revision Control:

o Regularly review and control task definitions to prevent unauthorized changes and rollbacks that might

grant elevated privileges.

• Secure Docker Images :

o Use trusted and scanned Docker images from reputable sources. Regularly update and patch images to

fix vulnerabilities.

• Implement Network Security Groups :

o Configure security groups to restrict network access to ECS tasks and services, limiting exposure to only

necessary traffic.

• Enable ECS Service and Task Logging:

o Use CloudWatch Logs to capture and monitor ECS service and task logs for any suspicious activity or

unauthorized access attempts.

4. IAM_PRIVESC_BY_ATTACHMENT
Execution Demonstration

In this scenario we start with a user credentials: Kerrigan

Kerrigan can’t list IAM policies, so we need to go through services manually

S3 and Lambda didn’t anything However we got a response for EC2:

Lets list them :

We will use an advanced filtering command to get only the data we want for the moment:

aws ec2 describe-instances --region us-east-1 --query

'Reservations[*].Instances[*`].{InstanceID:InstanceId,State:State.Name,PublicIP:PublicIpAddress,PublicDNS:PublicDns

Name}' --output table

After scanning the ports for the instance, there is only SSH open however we don’t have any creds for it

Let’s get more information about this instance, we will start by its rights:

And we can see that there is a right to use the AssumRole operations , which can allows us to get more privilege

Lets list our roles : aws iam list-roles

And we have the role in our user, but we also see that there is another role:

Which seems to have greater right (according to its name), let try attaching this role to our instance,

First we need to detach the role form the instance, using the data we gathered when listing roles and instance profiles:

Then reattach the new role

Now let create a key pair to get access to this ec2 with elevated privileges :

Set the rights permission for the key:

Check the network settings and IDs:

First we will list the subnets, and pick one from which we will take the subnet ID, the security group used should be part

of the same VPC:

Then list the security to find one with appropriate rights to access SSH:

We will now spawn a new EC2 with the attach security group, and profile instanceID (which contains our elevated Role)

aws ec2 run-instances --image-id ami-0a313d6098716f372 --instance-type t2.micro --iam-instance-profile

Arn=arn:aws:iam::992382600831:instance-profile/cg-ec2-meek-instance-profile-

iam_privesc_by_attachment_cgid75kxfibg5u --key-name keys --profile kerrigan --subnet-id subnet-

0062aed73aec86a6a --security-group-ids sg-0d49519c7303c6ee0

Aws Lets connect to it via SSH :

But first let’s get the public IP like earlier: aws ec2 describe-instances --region us-east-1

And we are connected :

Let’s delete the other instance:

But first install AWS CLI:

Sudo apt-get update

Sudo apt-get install awscli -y

Then list the instances:

Now that we have the instance id we can delete it :

And check that the instance is not running anymore:

We can actually seeing it via the AWS console:

FIX:

• Restrict IAM Policy Attachments:

o Limit who can attach or modify IAM policies by using tightly controlled IAM roles and permissions. Avoid

granting broad iam:AttachRolePolicy or iam:AttachUserPolicy permissions.

• Review and Limit Managed Policies:

o Regularly review managed policies attached to IAM roles and users. Ensure that only necessary policies

are attached and that they adhere to the principle of least privilege.

• Monitor Policy Attachments:

o Use AWS CloudTrail to log and monitor IAM policy attachments. Set up alerts for any unexpected

changes to IAM policies or role attachments.

• Enforce Policy Versioning and Change Management:

o Track changes to IAM policies with versioning. Implement change management procedures to review

and approve policy changes before they are applied.

• Enable IAM Access Analyzer:

o Use IAM Access Analyzer to identify and review roles and policies with broad permissions or unintended

access, ensuring that permissions are appropriately scoped.

5. VULNERABLE_COGNITO
Execution Demonstration

Int this scenario we start with a URL: https://g30fgby9wb.execute-api.us-east-
1.amazonaws.com/vulncognito/cognitoctf-vulnerablecognitocgidpomclowqdz/index.html

When browsing we get a login page:

Because we don’t have any credentials, we can try signup:

Since the signup request the email, in case we receive a confirmation code , we can try using a
temporary email, https://temp-mail.org/en/

The password will be : Passwd!1234

Only when submitted the form create an alert saying that the email domain must be an Ecorp.com
domain

Let’s try, looking at the source code (CTRL+u):

https://g30fgby9wb.execute-api.us-east-1.amazonaws.com/vulncognito/cognitoctf-vulnerablecognitocgidpomclowqdz/index.html
https://g30fgby9wb.execute-api.us-east-1.amazonaws.com/vulncognito/cognitoctf-vulnerablecognitocgidpomclowqdz/index.html
https://temp-mail.org/en/

And we get a JavaScript function checking using regex whether our email ends with ecorp.com ,

To bypass this we can intercept the response using a tool like Burpsuite :

Set the proxy on the browser: http://127.0.0.1:8080/ (using FoxyProxy or, settings>search “proxy”)

http://127.0.0.1:8080/

Launch Burpsuite, set the proxy settings to intercept the responses of the intercepted requests:

Navigate to the intercept, tab and when the signup.html page response is intercepted delete the lines
responsible for the check (in red here) then forward it and disable intercept:

It should look like that:

Due to CORS policy we need to disable the proxy on the browser before sending the request:

But then we have a console log indicating that the username is our email address

When trying to log in, we have a message saying that the user hasn’t been confirmed:

When looking back at our temporary email provider , we can see we received an email with a
confirmation code:

Since there is no confirmation method provided by the website , let do the confirmation manually via
AWS CLI, the clien-id can be found in the Source code of the website (in yellow)

Let’s now login:

Now that we are logged in when looking at the source code of index.html we can see something
interesting:

If we have an admin access we get redirected to admin.html ,

Admin.html is accessible even without being admin :

However, this doesn’t provide us with anything useful

Now that we know that there is different accesses available lets try to get the access our user has, for
this we need the accessToken returned when logged in :

We can find him in the LocalStorage:

Now that we have the Access token we can get the user rights:

And we can see that our user only has reader access,

Lets try to get admin access, for this we will use an AWS CLI command which allows us to modify the custom: access

field:

Let’s check our user rights:

And got the admin rights.

Let go once again the admin page and check in the source-code this time whether something changed :

Nothing changed however now that we have a more elevated user, we could try to leverage the information contained in

the source code to get credentials:

Here is the format of the command:

Identity-pool-id is in red

Login-provider in yellow

IdToken In the localStorage screenshots in blue

Once we have the ID we can get the Credentials:

Here is the format :

aws cognito-identity get-credentials-for-identity --region {region} --identity-id '{Id-found}' --logins "cognito-

idp.{region}.amazonaws.com/{UserPoolId}={idToken}"

let save it in the ~/.aws/credentials

Now let use pacu to search for privilege escalation methods:

Pacu -q start pacu

0 create new session

Import_keys cognito import credentials

Run iam__privesc_scan run the scan

FIX:

• Review and Restrict User Pool Policies:

o Ensure user pool policies enforce strong password requirements, account verification, and multi-factor

authentication (MFA) where appropriate.

• Enable Multi-Factor Authentication (MFA):

o Implement MFA for user authentication to add an extra layer of security beyond just passwords.

• Secure Cognito User Pool Triggers:

o Validate and sanitize inputs in Lambda triggers associated with Cognito user pools to prevent injection

attacks or other vulnerabilities.

• Review and Restrict Access to User Pool APIs:

o Limit API access to user pools based on least privilege principles, and use security measures such as API

keys or OAuth scopes to control access.

• Monitor and Audit Cognito Logs:

o Enable logging and monitoring for Cognito user pools using AWS CloudWatch and CloudTrail to detect

and respond to suspicious activities or configuration changes.

6. VULNERABLE_LAMBDA
Execution Demonstration
After configuring our AWS CLI using: “aws configure –profile bilbo”

Let’s get bilbo’s username: “aws sts get-caller-identity --profile bilbo “

His username being: “cg-bilbo-vulnerable_lambda_cgidjxm7883ivn”

Now that we have his username we can list the policies:

Let’s look inside this policy:

And we see that our user can assume a role which might lead to higher privileges

Let’s find the roles disponible for our user, using the iam:List* permission:

 Now that we have the Role Arn we can get STS credentials:

Using these creds and the token create a new profile using the session name, for this edit the ~/.aws/credentials file , it

should look like this :

Now that we have access to this user with the new role let’s try to list lambda functions:

We know that this lambda can provide us with permission but it check the database before, there will maybe be some

databases injection possible, lets check the source-code

Extract the function bucket link using the function name:

SRC-code link

After extracting the zip file, we get the source code of the lambda function:

 We will look only at the important parts, let start with an obvious SQL injection:

In this snippet we can see our function taking the policy name and checking whether it exists and set to True in the

database or not;

However the policy name used in the code isn’t sanitized which that we can inject an SQL payload allowing us to remove

the check of “public=’True’” and only checking the existence of the policy in the DB.

However few lines earlier in comments we have a set of instructions that are inserting in the database some policy and

we can see the AdministratorAcess policy with the public argument set to False:

https://prod-iad-c1-djusa-tasks.s3.us-east-1.amazonaws.com/snapshots/992382600831/vulnerable_lambda_cgidjxm7883ivn-policy_applier_lambda1-fe1f2f5f-d4f3-44d1-b999-e1c77343dba8?versionId=TXRMS0pKtafavgzxuiHgalCWbzmtoKGm&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEI%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJIMEYCIQD4NOUT6FBMVH0gHJE5y4YyWrul7uVW7gh%2F5C%2FaAzaF5QIhAPSwv83CTj1HXdG0tNUD8GBI%2BUnr8vTbN3nnHIAorZCyKroFCHgQBBoMNDc5MjMzMDI1Mzc5IgyXhAA55U9CVIkeT08qlwUtIyzP2VU9XQuhRE0vn0f7YnQpulBrQKcmpZSM5q7YqLomEpq5xosXNve%2FUrGOMfweDYzjR1PpeVhadxSWUKtkrg5t66sV%2FBdi7pgbUB2DoBxHLtgUQ2GFS5OIDyn9rU%2BEHETR0hXzbnouV2clcplbkP1gJDmX8h%2FHD4qhlcKvv%2BfyZNm8nsTEgzT1%2FtMNxyvFFXFwz9qnls9Eddj4WczjE%2FQsuFrQL8bA3YM2LvGDu1NfCkwuyPvzUAWyclGpDf%2BaQRxSQuBxK9zGkl7ff4fUIg3j9pi7oirJEdusrdrYXGakz0RHMJ5%2Fttm%2FzooXYCOIzcyCpYCZdq%2BAJQvNwH8eAu%2FIgNOUqjhekaScUR8fBjHfyux1dy%2Bbc7x9ujOikN%2BzgI8gBFALIcmJJRPk1JziinNqyGkRxWEhcf0alFZUg89qgN%2BbkO8n5PE%2B42kUoSJr0HG%2BSdIP6YVEVHmlcnYFb5bmnoPwGLL1kEGddNEgovaFQDbMK3iJdlTBaATTO4jwhLfXtMUuDKKpCI4jJzGi9sNhSEJ0P9YtVhr%2Bas2z%2F8JaWf5LcpaYGRaNfhT0bA8GocKUd%2FZhzTVsdfQnvHTQWi4PyoWCrkXJMo6NCAPmW9BVh5TlbZyMvB3Rxv%2FZzFp%2Fok44oIm3%2F9r4KUvvmoCRqpsz0alvXCqvkcHXqL0mSLelZv%2BBOWxBGJJSNeYWAFRBUuOPly2gumGMy9iXT4rbb9RCCa7t4hNQZ9Aeml%2F2PZknjHg0skc8v98kjRArOYoWFpflGGooqe19Od2HGlJpdKbhZRRhhRK7Cri1znY6Tr%2BSLHrJyx5IadESxJy7i6FV5WXbk29gWJDZXhQGdENgVMCL8xOI%2FU6TSf6A%2F9dwTVy9V2nPeQswprWutQY6sAEKihesTB2AQiCM7Wqq4twdrKHopy2jAK8bjl00Sa83HZMZJqeHk4NGbCYd13YlTst6FEI8YJkPB0qI0v2DgB1RZB0bnojbWnp2I3llU2Rafn81JXhkhZ7yUeo9cWObTkLhBy9iMYOLn41C08rVSnwaLbCit25Jplx5D53VqNC9tnOW1F0UskRau2AoarN7YdFDzmtFEwWDcRVLQsWlit8yD5LLyX%2FnHTljT4yClFpa9w%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20240801T152027Z&X-Amz-SignedHeaders=host&X-Amz-Expires=600&X-Amz-Credential=ASIAW7FEDUVR4W2RRGGA%2F20240801%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=e3bbcf57f05b2eeb47e987d03d038d9358e3f76945308bcbb8bd4bcd0ddc8a03

We can easily guess that there is a strong probability that the DB contains an Administrator Access policy allowing us to

get admin right by using the SQL injection to bypass the public argument check.

The SQLi would be : “AdministratorAccess’ -- “ which comment the public=True condition

Now that we have our SQLi we need to create our request:

The End of the code gives us an idea about how we could craft our payload:

We can see that the function receives an object the text format closest to this representation is the JSON format let try

sending a request with our payload saved in a JSON format:

First let’s craft our payload.json file, it should look like this:

Then invoke the lambda function:

 Let’s check our bilbo user now.

We can now access the secret manager and List the secrets:

FIX:

• Restrict Lambda IAM Role Permissions :

o Apply least privilege to the Lambda execution role, only granting permissions necessary for its function.

• Secure Environment Variables :

o Encrypt sensitive environment variables using AWS Key Management Service (KMS) and avoid storing

credentials in plain text.

• Implement Input Validation :

o Validate and sanitize all inputs to the Lambda function to prevent injection attacks.

• Enable Logging and Monitoring :

o Use AWS CloudWatch to log and monitor Lambda executions for anomalies or unauthorized access.

• Apply Network Segmentation :

o Restrict Lambda access to internal services and networks and limit its internet access where possible.

7. IAM_PRIVESC_BY_ROLLBACK
Execution Demonstration

In this scenario we start with a user ‘Raynor’ credentials, and username.

 We first need to configure AWS CLI for this user:

Let’s list the user-attached-policies to get Raynor’s permissions:

Now that we have the policy name, let get its content but first we need its version :

We now have a list with multiple policy versions, let’s look at the content for each of them:

V1:

In version 1 we have only read access to IAM , and we have the right to set a policy version as Default (which if a version

has greater permissions will allows us to get access to this version thus theses permissions)

V2:

The V2 version Deny every access if the IP isn’t within CIDR 192.0.2.0/24 or 203.0.113.0/24

Which is not our case so this version would be worth than the actual one

V3:

This version only gives use read access to IAM but not list access which mean we need to know or guess the policies

name to be able to read them , it also allows access between certain dates (in 2017) which means this version is also not

useful for us.

V5:

This version allows us to list/read S3 buckets

V4:

This version gives us access to any resources which is the full AdministratorAccess policy .

With this version we will be able to do anything we want.

We now need to enable it. We can do it by using the policy we found in version, to define the default version policy to

the V4 , which when we will next time call this policy use the V4 version (all permissions) to check our permissions:

Let’s make sure the default version is accessible:

FIX:

• Restrict IAM Policy Modifications:

o Prevent unauthorized users from modifying IAM policies by applying strict IAM permissions and using

managed policies for better control.

• Implement Version Control on IAM Policies:

o Use versioning to track changes to IAM policies and ensure that rollback actions are monitored and

approved.

• Enable IAM Policy Evaluation Logging:

o Use AWS CloudTrail to log IAM policy changes and evaluate policy compliance regularly.

• Monitor IAM Role and Policy Changes:

o Set up CloudWatch alarms to detect unexpected changes to IAM roles and policies.

• Enforce MFA for Privileged Actions:

o Require multi-factor authentication (MFA) for actions that modify IAM roles or policies.

FLAWS.CLOUD
flAWS – Level 1
URL: http://flaws.cloud/

We need to find how the site is hosted:

For this we will do a reverse DNS lookup on the IP we got from the lookup on flaws.cloud

We get https://s3-website-us-west-2.amazonaws.com

As we can see the site Is hosted on an amazon S3 bucket

Since the bucket needs to appear in the URL we can try access it using flaws.cloud as a bucket.

Using AWS without sign-request:

https://s3-website-us-west-2.amazonaws.com/

We can then browse the secret file:

http://flaws.cloud.s3.us-west-2.amazonaws.com/secret-dd02c7c.html

http://flaws.cloud.s3.us-west-2.amazonaws.com/secret-dd02c7c.html

flAWS – Level 2
URL: http://level2-c8b217a33fcf1f839f6f1f73a00a9ae7.flaws.cloud/

When trying to browse the bucket:

https://level2-c8b217a33fcf1f839f6f1f73a00a9ae7.flaws.cloud.s3.us-west-2.amazonaws.com

We get an access denied .

Let’s try using an existing AWS account :

Lets browse the secret file: http://level2-c8b217a33fcf1f839f6f1f73a00a9ae7.flaws.cloud/secret-e4443fc.html

Fix: don’t set permission for AnyAuthUser

http://level2-c8b217a33fcf1f839f6f1f73a00a9ae7.flaws.cloud/
https://level2-c8b217a33fcf1f839f6f1f73a00a9ae7.flaws.cloud.s3.us-west-2.amazonaws.com/
http://level2-c8b217a33fcf1f839f6f1f73a00a9ae7.flaws.cloud/secret-e4443fc.html

flAWS – Level 3
URL: http://level3-9afd3927f195e10225021a578e6f78df.flaws.cloud/

Let’s try accessing the bucket in public: http://level3-9afd3927f195e10225021a578e6f78df.flaws.cloud.s3.us-west-

2.amazonaws.com/

And we have Access.

We see that there is some .git , some commit messages , so let’s download it on our machine:

There isn’t any interesting info there, let’s take a look at .git/COMMIT_EDITMSG

http://level3-9afd3927f195e10225021a578e6f78df.flaws.cloud/
http://level3-9afd3927f195e10225021a578e6f78df.flaws.cloud.s3.us-west-2.amazonaws.com/
http://level3-9afd3927f195e10225021a578e6f78df.flaws.cloud.s3.us-west-2.amazonaws.com/

And we have something that has been added but seemed to be removed let’s check the logs:

And we have only 2 commits one being just before the commit with the message

Let’s look at what were in this commit:

And we have a new file called access_keys.txt

As we could suppose there is AWS access and Secret keys in it:

Lets configure our AWS CLI to connect to this user:

Aws configure –profile lvl3

Fill the access and secret keys according to what is in the file

Then try list the buckets accessible for this user:

Lets access the 4 bucket using the bucket name as link:

Fix: don’t commit “.git” directory, revoke keys when leaked, roll them, remove ‘Everyone’ permissions

flAWS – Level 4
URL: http://level4-1156739cfb264ced6de514971a4bef68.flaws.cloud/

For this one we have been told that there is a public snapshot of an EC2 instance just after nginx server has been set. And

that we need to access a website protected by a 401

http://4d0cf09b9b2d761a7d87be99d17507bce8b86f3b.flaws.cloud/

Let’s then search for the snapshot using the credentials we configured earlier:

http://level4-1156739cfb264ced6de514971a4bef68.flaws.cloud/
http://4d0cf09b9b2d761a7d87be99d17507bce8b86f3b.flaws.cloud/

Now that we found the snapshot, lets import it as a volume in our AWS account:

The volume being imported lets create an instance and attach the volume to it :

Browse your AWS EC2 instance tab and create a basic ubuntu instance, be sure SSH is allowed and save the keys in case

you choose to connect via SSH:

https://us-west-2.console.aws.amazon.com/ec2/home?region=us-west-2#Instances

click on ‘launch instance’ to create a new one.

Once created navigate to the volume tab and attach the volume we imported to the instance

I will choose the name : /dev/sdj for some reason the device we will mount is renamed xvdj1 (surely because the

snapshot contain multiple partition)

https://us-west-2.console.aws.amazon.com/ec2/home?region=us-west-2#Volumes:

go back to the instance we created then click on connect:

https://us-west-2.console.aws.amazon.com/ec2/home?region=us-west-2#Instances
https://us-west-2.console.aws.amazon.com/ec2/home?region=us-west-2#Volumes

click again on connect :

And we will get a shell:

Create the directory where we will mount our snapshot then mount it :

And we have all the filesystem of the snapshot

Let’s look at the content of the users:

/home/ubuntu

It appears that the setupNginx.sh has the credentials for the website we wanted to access lets try:

And we’re in.

Fix: Avoid making the snapshots public

flAWS – Level 5
URL: http://level5-d2891f604d2061b6977c2481b0c8333e.flaws.cloud/243f422c/

When looking at the links provided that this link

http://4d0cf09b9b2d761a7d87be99d17507bce8b86f3b.flaws.cloud/proxy/ is acting as a proxy. Now maybe accessing

the meta-data Host from the proxy will allow us to gather meta-data on the AWS currently in use:

http://4d0cf09b9b2d761a7d87be99d17507bce8b86f3b.flaws.cloud/proxy/169.254.169.254

 which seems like version of the application , lets look at the latest for the moment:

http://4d0cf09b9b2d761a7d87be99d17507bce8b86f3b.flaws.cloud/proxy/169.254.169.254/latest

http://level5-d2891f604d2061b6977c2481b0c8333e.flaws.cloud/243f422c/
http://4d0cf09b9b2d761a7d87be99d17507bce8b86f3b.flaws.cloud/proxy/flaws.cloud/
http://4d0cf09b9b2d761a7d87be99d17507bce8b86f3b.flaws.cloud/proxy/169.254.169.254
http://4d0cf09b9b2d761a7d87be99d17507bce8b86f3b.flaws.cloud/proxy/169.254.169.254/latest

When looking at :

http://4d0cf09b9b2d761a7d87be99d17507bce8b86f3b.flaws.cloud/proxy/169.254.169.254/latest/meta-data

After IAM managing the user it might interesting to look at them:

http://4d0cf09b9b2d761a7d87be99d17507bce8b86f3b.flaws.cloud/proxy/169.254.169.254/latest/meta-data/iam

http://4d0cf09b9b2d761a7d87be99d17507bce8b86f3b.flaws.cloud/proxy/169.254.169.254/latest/meta-

data/iam/security-credentials

http://4d0cf09b9b2d761a7d87be99d17507bce8b86f3b.flaws.cloud/proxy/169.254.169.254/latest/meta-

data/iam/security-credentials/flaws

We have the same credentials, and a token

http://4d0cf09b9b2d761a7d87be99d17507bce8b86f3b.flaws.cloud/proxy/169.254.169.254/latest/meta-data
http://4d0cf09b9b2d761a7d87be99d17507bce8b86f3b.flaws.cloud/proxy/169.254.169.254/latest/meta-data/iam
http://4d0cf09b9b2d761a7d87be99d17507bce8b86f3b.flaws.cloud/proxy/169.254.169.254/latest/meta-data/iam/security-credentials
http://4d0cf09b9b2d761a7d87be99d17507bce8b86f3b.flaws.cloud/proxy/169.254.169.254/latest/meta-data/iam/security-credentials
http://4d0cf09b9b2d761a7d87be99d17507bce8b86f3b.flaws.cloud/proxy/169.254.169.254/latest/meta-data/iam/security-credentials/flaws
http://4d0cf09b9b2d761a7d87be99d17507bce8b86f3b.flaws.cloud/proxy/169.254.169.254/latest/meta-data/iam/security-credentials/flaws

After configuring the AWS user when trying to list the bucket we have an error:

After some googling we found that we need to insert the token in ~/.aws/credentials:

https://stackoverflow.com/questions/39051477/the-aws-access-key-id-does-not-exist-in-our-records

nano ~/.aws/credentials

it should look like this:

Try again to access the buckets:

https://stackoverflow.com/questions/39051477/the-aws-access-key-id-does-not-exist-in-our-records

We now have the subdirectory to browse: http://level6-cc4c404a8a8b876167f5e70a7d8c9880.flaws.cloud/ddcc78ff/

Fix: restrict access to 196.254.169.254, restrict IAM Roles as much as possible

http://level6-cc4c404a8a8b876167f5e70a7d8c9880.flaws.cloud/ddcc78ff/

flAWS – Level 6
URL: http://level6-cc4c404a8a8b876167f5e70a7d8c9880.flaws.cloud/ddcc78ff/

We start with a user creds and a policy group: MySecurityAudit

To get more information about this policy let’s find our userName, userID & ARN:

Now let’s list the policies attached to our user:

The MySecurityAudit only allows listing of a lot of services,

However list_apigateways allowed us to find a REST API:

Let’s first get the policy version: (v4)

Now that we have the version we can read the policy:

http://level6-cc4c404a8a8b876167f5e70a7d8c9880.flaws.cloud/ddcc78ff/

And we have the Api ressource : /restapis/*

Since our policies don’t allow us to access directly API gateway , we can check whether it is a lambda function and try

figuring out what is the trigger .

MysecurityAudit gives us the right to list the lambda functions:

And we have the Level6 lambda function

Now let’s get the policy to get the trigger of the function:

And we get that s333ppypa75 API endpoint is the trigger

Now using the list_apigateways policy let’s get the stage name under which the API has been deployed:

And we have Prod

To access the lambda function via the API we can now browse:

https://s33ppypa75.execute-api.us-west-2.amazonaws.com/Prod/level6

Fix : avoid giving IAM read permission , give only required permission

https://s33ppypa75.execute-api.us-west-2.amazonaws.com/Prod/level6

